БОЛЕЗНИ ПЕЧЕНИ, СВЯЗАННЫЕ С НАСЛЕДСТВЕННЫМИ НАРУШЕНИЯМИ МЕТАБОЛИЗМА

Немцов Виктор Игоревич
Профессор кафедры госпитальной терапии
ПСПб ГМУ
2021 год

- Болезнь Вильсона
- Первичный гемохроматоз
- Дефицит альфа-1-антитрипсина
- Муковисцидоз

(МКБ-10 — E83.0 — Нарушения обмена меди)

- Болезнь впервые описана английским неврологом С. Вильсоном (S. Wilson)
 в 1912 году как заболевание нервной системы (прогрессирующая лентикулярная дегенерация), которое сопровождается хроническим поражением печени с формированием в итоге ЦП
- В настоящее время установлено, что это генетически детерминированое аутосомно-рецессивное заболевание

- Заболевание связано с нарушениями обмена меди и нарушениями функции преимущественно печени и ЦНС в связи с отложением в них меди
- Распространенность (по разным статистическим данным) от 1 до 30 больных на 1 миллион человек, а ежегодная частота выявления новых случаев в популяции — от 1 на 30.000 до 1 на 100.000

- Среднее потребление меди при обычной диете
 до 2-5 г/сутки
- Суточная потребность 0,9 г/сутки
- Поэтому большая часть поглощаемой меди (до 60%) остаётся в эпителии тонкой кишки в виде хелатно связанных комплексов и в итоге выводится из организма с фекалиями

- Остальная часть меди всасывается (в ДПК и в проксимальном отделе тощей кишки) и попадает в систему воротной вены с помощью специфического белка-переносчика (АТФ-аза 7А)
- Следует вспомнить, что из-за мутаций гена АТР7А в организме возникает недостаток меди

 орфанное заболевание, которое носит название болезни Менкеса («болезнь курчавых волос»)

- В печени медь активно выводится из циркуляции, некоторые ее количества утилизируются для метаболических процессов, некоторое количество выводится с жёлчью
- В печени медь присоединяется к апоцерулоплазмину с образованием молекулы церулоплазмина (ЦП)
- В норме около 95 % всей меди организма находится в печени и в итоге экскретируется с жёлчью (только до 50 мкг/сутки меди попадает в общий кровоток)

- Церулоплазмин это ферроксидаза, содержащая медь, участвующая в метаболизме железа и во многих окислительно-восстановительных реакциях
- При болезни Вильсона Коновалова из-за низкой продукции церулоплазмина страдает мобилизация меди из печени
- Следует также помнить, что церулоплазмин относится к группе альфа-2-глобулинов, то есть является белком острой фазы воспаления и его количество возрастает при любых воспалительных заболеваниях, стрессе, беременности

У больных выделен мутантный ген — АТР7В (находится на 13 хромосоме) — он кодирует металлопереносящую аденозинтрифосфатазу Р-типа, которая в основном экспрессируется в гепатоцитах и действует как трансмембранный переносчик меди, ответственный за встраивание ионов меди в белок церулоплазмин

- Невозможность внедрения меди в ЦПН является дополнительным последствием потери функционального белка <u>АТР7В</u>
- Продукция и секреция в печени ЦПН без меди
 — апоцерулоплазмина приводит к снижению
 уровня ЦПН у большинства больных из-за более
 короткого времени периода полураспада этого
 белка

- Молекулярно-генетическое исследование выявляет либо гомозиготность по одной мутации на обоих аллелях гена, либо определить две мутации, составляющие смешанную гетерозиготность
- К настоящему времени определено свыше 600 мутаций гена АТР7В, но не все они вызывают болезнь (доказана роль 380 мутаций)

- Гены АТР7А и АТР7В кодирует белки, ускоряющие химические реакции меди: соответственно АТФ-азу 7А и АТФ-азу 7В
- АТФ-аза 7А способствуют всасыванию меди в кишечнике и её проникновению в головной мозг
- мРНК АТФ-азы 7В обнаружена в клетках печени и капиллярах мозга
- АТФ-аз 7В способствует выведению меди из головного мозга в кровь и из крови в жёлчь

- Корреляция «генотип-фенотип» затруднена из-за большого количества смешанных гетерозигот(ов) и относительно малого количества гомозигот(ов)
- При дефиците АТФ-азы 7В медь откладывается в печени, повреждая ее, а также выходит в кровоток и откладывается преимущественно в головном мозге, почках и радужке

ПАТОГЕНЕЗ БВ

- Избыточное содержание меди приводит к активации окислительных реакций, формированию свободных радикалов и повышению перекисного окисления липидов (ПОЛ)
- В результате ПОЛ образуется малоновый диальдегид, стимулирующий образование коллагена и печёночного фиброза
- Кроме этого, дестабилизируется мембраны митохондрий и лизосом с выходом их ферментов в цитоплазму

- Российский невролог Н.В. Коновалов в 1960 году подробно описал это заболевание и выделил 5 клинических форм
- **Брюшная (абдоминальная) форма** тяжёлое поражение печени, которое проявляется увеличением печени, вильсоновским гепатитом с трансформацией в цирроз печени, итогом чего является печёночная несостоятельность; эта форма может привести к смерти до появления симптомов со стороны нервной системы и её продолжительность — от нескольких месяцев до 3-5 лет

- Ригидно-аритмогиперкинетическая (ранняя) форма характеризуется быстрым течением и начинается в детском возрасте; преобладает мышечная скованность, приводящая к изменениям суставов и их тугоподвижности, движения замедляются, руки и ноги могут непроизвольно двигаться червеобразно в сочетании с быстрыми непроизвольными сокращениями мышц
- Характерны нарушения речи (дизартрия) и глотания (дисфагия), насильственный, непроизвольный смех и плач, нарушения эмоционального состояния, умеренное снижение интеллекта
- Заболевание продолжается 2-3 года, заканчивается смертельным исходом

- Дрожательно-ригидная форма встречается чаще всего; начинается в юношеском возрасте, протекает медленно, иногда с периодами полного или неполного восстановления и внезапными ухудшениями
- Обострение сопровождается повышением температуры до 37—38 °C; характерно одновременное развитие тяжёлой скованности мышц и ритмичного дрожания частотой 2-8 подёргиваний в секунду, эти симптомы усиливаются при движениях и волнении, но исчезают в покое и во сне
- Средняя продолжительность жизни около 6 лет

- Дрожательная форма проявляется с возраста 20-30 лет, течёт относительно медленно (10-15 лет и более); преобладает дрожание, ригидность появляется лишь в конце болезни, отмечается отсутствие мимики, медленная монотонная речь, возможны изменения психики, частые эмоциональные вспышки, судорожные приступы
- Экстрапирамидно-корковая форма встречается реже других и для неё типичны, помимо нарушения функции печени, внезапно развивающиеся двигательные расстройства по типу параличей (пирамидные парезы), судорожные (эпилептиформные) припадки и слабоумие
- Летальный исход обычно наступает через 6-8 лет

КЛИНИЧЕСКИЕ ФОРМЫ БВ

В настоящее время чаще всего выделяют следующие формы:

- Бессимптомную форму
- Печеночную форму
- Церебральную форму (с преимущественно неврологическими или психиатрическими проявлениями)
- Смешанную форму

ПЕЧЕНОЧНАЯ ФОРМА БВ

- Длительная бессимптомная гепатомегалия или изолированная спленомегалия
- Жировой гепатоз
- Острый гепатит (до 25% больных как манифестация БВ)
- Аутоиммунный гепатит (с наличием соответствующих антител и с последующей трансформацией в ЦП)

ПЕЧЕНОЧНАЯ ФОРМА БВ

- ЦП с постепенно прогрессирующей хронической печёночной недостаточностью
- Острая печеночная недостаточность (с признаках острой почечной недостаточности)

БВ И ОСТРАЯ ПЕЧЕНОЧНАЯ НЕДОСТАТОЧНОСТЬ

Клинические особенности:

- Гемолитическая анемия с признаками внутрисосудистого гемолиза и отрицательной пробой Кумбса
- Коагулопатия, не отвечающая на введение витамина К
- Быстрое прогрессирование почечной недостаточности
- Относительно невысокий уровень сывороточных аминотрансфераз (менее 2000 МЕ/л)
- Нормальный или субнормальный уровень ЩФ (менее 40 ME/л
- Соотношение м:ж=2:1
- Может быть первым клиническим проявлением ЦП у больных с БВ

НЕВРОЛОГИЧЕСКАЯ ФОРМА БВ

- Двигательные нарушения (тремор, непроизвольные движения, микрография)
- Слюнотечение, дизартрия
- Ригидная дистония
- Псевдобульбарный паралич
- Вегетативная дистония
- Мигренеподобные головные боли
- Бессонница
- Эпилептические (эпилептоидные) припадки

ПСИХИАТРИЧЕСКАЯ ФОРМА БВ

- Депрессия
- Невротическое поведение
- Изменения личности
- Различные психозы

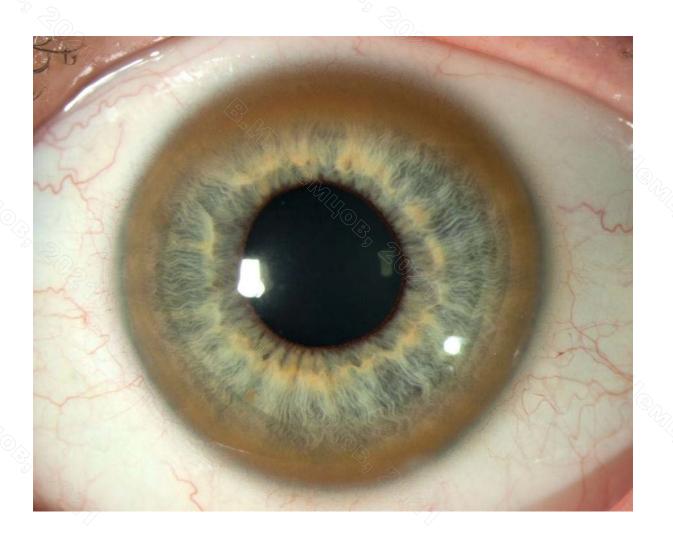
- Неврологические и психические нарушения обычно появляются позже симптомов поражения печени на 3-м десятилетие жизни, но иногда могут возникнуть раньше (даже в детстве), и с них БВ манифестирует у 34% больных неврологической формой, у 10% больных психиатрической
- Неврологическая и психиатрическая формы БВ могут сопровождаться явными признаками поражения печени, но иногда длительное время их может не быть

- По течению БВ можно разделить на две последовательные стадии:
- Латентная стадия отсутствием внешних проявлений болезни, изменения определяются только при лабораторном исследовании
- Стадия клинических проявлений появляются специфические симптомы болезни гепато-лентикулярной дегенерации
- Во время лечения иногда выделяют стадию отрицательного баланса меди, при которой наблюдается регресс клинической симптоматики и характерных лабораторных изменений

ВОЗРАСТНЫЕ ОСОБЕННОСТИ БВ

- Обычный возраст начала клинического проявления БВ 5-35 лет
- БВ с атипичной симптоматикой чаще наблюдается у детей до 2 лет
- Описаны случаи развития цирроза печени у детей в возрасте 3 лет и острой печеночной недостаточности в возрасте 5 лет
- ЦП обнаруживается у большинства больных БВ возрасте 10-20 лет, при неврологической форме БВ ЦП возникает значительно позже или отсутствует

ПОРАЖЕНИЯ ДРУГИХ ОРГАНОВ И СИСТЕМ ПРИ БВ


- Кольцо Кайзера-Флейшнера
- Кожные язвы
- Нефролитиаз и аминоацидурия
- Ранний остеопороз и артриты
- Кардиомиопатия с нарушениями ритма
- Панкреатит
- Гипопаратиреоидизм
- Менструальные нарушения, бесплодие, повторные выкидыши
- Рецидивирующий гемолиз

КОЛЬЦО КАЙЗЕРА-ФЛЕЙШНЕРА

- Это накопление меди в десцеметовой оболочке радужки глаза
- Выявляется при осмотре с помощью щелевой лампы
 - выглядит как полоска золотисто-коричневого пигмента около лимба роговицы
- В момент установления диагноза БВ определяется у 44-62% больных
- У детей обычно не выявляется
- Почти всегда определяется при неврологической форме болезни (95%)
- Редко встречается при синдроме холестаза, в том числе у детей с неонатальным холестазом

Желтовато-зелёная или зеленовато-коричневая пигментация по периферии роговицы из-за отложения меди

Ю.И. РОЖКО и др. Практическое пособие-атлас для врача общей практики и офтальмолога, Гомель, 2018

- Наличие колец Кайзера-Флейшнера
- Уровень церулоплазмина меньше 20 мг/дл
- Суточное выделение меди с мочой больше 40 мкг
- Если содержание меди в печени больше 250 мкг/г сухого веса органа диагноз БВ установлен, если от 50 до 250 мкг/г сухого веса молекулярно-генетическое исследование, если меньше 50 мкг/г другой диагноз

Церулоплазмин — уровень может быть снижен не только при БВ, но также при следующих причинах:

- Кишечная или почечная потеря белка
- Терминальные заболевания печени любой этиологии
- Дефицит меди (диетический или при болезни Менкеса — генетически детерминированное, связанное с X хромосомой, нарушение транспорта меди за счет мутации АТР7А)
- Ацерулоплазминемия мутация в гене церулоплазмина на 3 хромосоме (у таких больных гемосидероз, а не накопление меди)

Концентрация меди в паренхиме печени:

- Нормальное содержание меди редко превышает
 50 мкг/г сухого веса органа; у гетерозигот по гену БВ
 это показатель редко превышает 250 мкг/г
- Кроме БВ, этот показатель может быть выше у больных с длительным холестазом и при синдроме идиопатического медного токсикоза (в частности при индийском детском циррозе из-за приготовления пищи в медной и латунной посуде)
- Всегда следует помнить, что в далеко зашедших случаях БВ распределение металла в органе негомогенно

Ультраструктурные изменения ткани печени: специфические изменения митохондрий и лизосом:

- Изменения размера и формы матричного материала митохондрий на стадии стеатоза печени, в частности

 увеличение внутриампулярного пространства и расширение устья ампул — в случае отсутствия холестаза этот признак специфичен для БВ)
- Многочисленные включения (жир, гранулярный материал, содержащий медь) в митохондриях
- Депозиты меди в лизосомах

ЛЕЧЕНИЕ

- Желательно исключить из рациона продукты, особенно богатые медью (бобовые, печень, почки, моллюски)
- При необходимости следует использовать деионизированную воду (если питьевая вода в данном регионе содержит медь в концентрации более 0,2 ppm — parts per million, то есть более 0,2 частиц на 1 миллион)

- **D-пеницилламин** хелатор общего действия, вызывающий купрурию
- 250-500 мг/сутки с повышением на 250 мг/сутки каждые 4-7 дней до дозы 1000-1500 мг/сутки на 2-4 приема
- Поддерживающая доза 750-1000 мг/сутки
- Побочные реакции лихорадка, сыпь, апластическая анемия, лейкопения, тромбоцитопения, нефротический синдром, дегенеративные изменения кожи, ретинит, гепатотоксические реакции
- У 30% больных тяжелые побочные реакции, требующие прекращения лечения

- **Триентин** хелатор общего действия, вызывающий купрурию
- 750-1000 мг/сутки в 2-3 приема
- Побочных проявлений значительно меньше (гастрит, апластическая анемия — редко, сидеробластная анемия)
- При использовании обоих препаратов выделение меди с мочой должно превышать 200 мкг/сутки (3,2 ммоль), если меньше — терапия не эффективна (невосприимчивость к препарату)

- **Цинк (ацетат, глюконат или фосфат цинка)** (блокатор кишечного всасывания меди)
- 150 мг/сутки в 2-3 приема (150 мг в пересчете на простой цинк)
- Побочные проявления гастрит, панкреатит, изменения иммунной функции

- **Тетратиомолибдат аммония** (хелатор+блокатор всасывание меди) 120-200 мг/сутки
- Применяются также антиоксиданты (витамин Е)

- Декомпенсированный ЦП хелатор + препараты цинка 50 мг/сутки, **трансплантация печени** (менее определенные показания у больных с выраженной неврологической симптоматикой)
- При беременности продолжать лечение, минимизировать дозы (как и при любой планируемой операции — возможно плохое заживление раны)
- Кормить грудью можно хелаты не проникают в грудное молоко

СИНДРОМ ПЕРЕГРУЗКИ ОРГАНИЗМА ЖЕЛЕЗОМ

РОЛЬ ЖЕЛЕЗА В ОРГАНИЗМЕ

- Железо необходимый микроэлемент, играющий ключевую роль в процессах метаболизма, роста и пролиферации клеток и входит в состав многих ферментов и других биологически активных веществ, в частности, цитохромов
- Вместе с тем, избыточное содержание железа вызывает цитотоксические эффекты, которые обусловлены способностью железа, как металла с переменной валентностью, запускать цепные свободно радикальные реакции, приводящие к перекисному окислению липидов (ПОЛ) биологических мембран, токсическому повреждению белков и нуклеиновых кислот
- Поэтому содержание данного микроэлемента жестко регулируется

- В организме здорового человека содержится около 3-5 г железа, из которого большая часть — 2100 мг входит в состав клеток крови и костного мозга (объём гемоглобина), в макрофагах содержится 600 мг железа и в миоглобине мышц — 300 мг
- Практически все метаболически активное железо находится в связанном с белками состоянии, а свободные ионы железа могут присутствовать только в очень низких концентрациях

- В физиологических условиях ежедневно теряется не более 0,05% (< 2,5 мг) от общего количества железа эти потери включают железо, которое удаляется со слущивающимися клетками эпителия кожи и желудочно-кишечного тракта, а также с потоотделением
- Столько же (1-2 мг) железа ежедневно всасывается в кишечнике (от 1,5 до 4,4% принятого с пищей железа)

- Алиментарное железо всасывается преимущественно в ДПК, в которой также происходит редукция Fe³⁺ до Fe²⁺ с помощью цитохрома b
- Далее Fe²⁺ поступает в энтероциты с помощью металлотранспортёра-1, а оттуда проникает через базолатеральную мембрану энтероцита в кровоток с помощью ферропортина
- При этом Fe²⁺ вновь окисляется до инертного Fe³⁺, который связывается с белком-переносчиком (трансферрином) и доставляется тканям

- Ежедневное поступление пищевого железа
 из кишечника составляет 1-2 мг, а для эритропоэза
 требуется ежедневно около 20-30 мг железа, которые
 получаются благодаря ежедневному возвращению
 железа в циркуляцию макрофагами селезенки и печени
 процесс «рециркуляции железа»
- Процессы всасывания, рециркуляции и хранения запасов железа регулируются специальным гормоном гепсидином, который продуцируется клетками печени и в физиологических условиях его продукция регулируется уровнем железа в крови и степенью оксигенации ткани печени

В организме человека отсутствуют активные физиологические механизмы выведения железа, поэтому нарушение механизмов регуляции гомеостаза железа, избыточное всасывание или парентеральное поступление железа быстро приводят к развитию перегрузки железом, основным показателем которого является повышение уровня ферритина

ПОВЫШЕНИЕ УРОВНЯ ФЕРРИТИНА

- Повышение уровня ферритина с перегрузкой организма железом:
 - Шесть типов наследственного гемохроматоза
 - Вторичная перегрузка железом (многократные трансфузий эритроцитарной массы и/или наличия неэффективного эритропоза, β-талассемия, серповидно-клеточная анемия, а также миелодиспластические синдромы)

ПРИЧИНЫ ПОВЫШЕНИЯ УРОВНЯ ФЕРРИТИНА

- Повышение уровня ферритина без перегрузки железом:
 - Острые инфекции
 - Аутоиммунные заболевания (СКВ, РА)
 - Болезни печени (гепатиты и ЦП, особенно алкогольная болезнь (до 50% больных)
 - Некоторые злокачественные заболевания (лейкозы, гепатокарцинома, рак лёгкого)
 - Порфирия
 - Уремия

МКБ 10:Е83.1 — Нарушения обмена железа

ИДИОПАТИЧЕСКИЙ (ПЕРВИЧНЫЙ) ГЕМОХРОМАТОЗ

— генетически обусловленная форма заболевание печени, вызванное недостаточностью ферментных систем, регулирующих всасывание желез кишечнике, что приводит к усилению всасывания железа (3-4 мг/сутки при норме 1-2 мг/сутки), повышению его содержания в сыворотке крови и отложению в гепатоцитах, а также в клетках поджелудочной железы, коже, миокарде и других тканях

ИДИОПАТИЧЕСКИЙ (ПЕРВИЧНЫЙ) ГЕМОХРОМАТОЗ

Эпидемиология:

Частота – болеет около 0,5% населения – 30 млн человек

Чаще болеют мужчины м/ж = 6/1 - 10/1

Заболевание развивается у 3-5 людей на 1000 носителей гена первичного гемохроматоза

ИДИОПАТИЧЕСКИЙ (ПЕРВИЧНЫЙ) ГЕМОХРОМАТОЗ

Выделяют несколько форм заболевания:

Классический, обусловленный мутацией гена HFE (наиболее частые мутации — C282Y; C282Y/H63D) — тип 1

Не обусловленные мутацией гена HFE (пять типов):

Ювенильный гемохроматоз — тип 2a, связанный с мутацией гена HJV и тип 2b, связанный с мутацией гена HAMP

Вариант, связанный с мутацией в гене трансферринового рецептора 2 (TFR2)SLC40A1 — тип 3

Четвёртый тип связан с мутацией гена SLC40A1 (кодирует ферропортин)

Пятый тип связан с мутацией FTH1 (кодирует тяжёлую субъединицу ферритина)

HFE-ассоциированный первичный гемохроматоз

- Наиболее распространён первый вариант ПГ (НFE-ассоциированный тип с аутосомнорецессивным наследованием) — он составляет около 80% всех случаев
- Ранее считалось, что у всех носителей мутантного гена HFE развивается клинически явное заболевание

Теперь установлено, что фенотипическая экспрессия гена C282Y (эта мутация — почти у 85% больных) возникает у 70% гомозигот, и только у 10% из них возникает тяжёлая перегрузка железом с поражением внутренних органов

НFE-ассоциированная форма первичного гемохроматоза может быть выявлена генетическим анализом у клинически бессимптомных людей — они составляют группу риска, как генетически предрасположенные к развитию манифестного гемохроматоза; у них также повышен риск развития сахарного диабета

Заболевание обусловлено наследованием мутантных аллелей гена HFE, который находится на коротком плече 6 хромосомы (локус 6р22.2) около кластера генов МНС (HLA — гены главного комплекса гистосовместимости) и связан с антигенами HLA A3, B7, B14 (аллель A3 и гаплотипы АЗ В7 и АЗ В14 — в европейской популяции)

- Белок HFE уменьшает сродство рецепторов трансферрина к субстрату, нагруженному железом
- При мутациях гена HFE происходит:
 - Повышенное всасывание железа
 - Уменьшение синтез и активации <u>гепсидина</u> белка, который регулирует потоки железа (влияние на поглощение и высвобождение железа энтероцитами и макрофагами)
 - Нерегулярное высвобождение железа и проникновение его в ткани

Одним из важных компонентов патогенеза связан с нарушением сигнальных путей bone morphogenetic protein 6 (BMG6) — белка-регулятора экспрессии <u>гепсидина</u> путём взаимодействия с трансферриновым рецептором 1

Гепсидин синтезируется в печени и его основная функция — блокирование всасывания железа в ДПК, а также блокирование высвобождения накопленного железа из гепатоцитов и макрофагов

- Функционирование гепсидина осуществляется посредством взаимодействия системы «гепсидин ферропортин»
- **Ферропортин** транспортер в эпителиальных клетках кишечника и ретикулоэндотелиальных макрофагах для переноса железа в плазме
- Железо является главным регулятором гомеостаза гепсидина

- По своим функциям гепсидин противодействует ферропортину основному экспортеру железа в мембране макрофагов, гепатоцитов и базолатеральный поверхности энтероцитов
- Гепсидин индуцирует деградацию ферропортина, что приводит в результате к увеличению внутриклеточных запасов железа, снижению всасывания железа и концентрации циркулирующего железа

- При дефиците гепсидина происходит проникновение железа в ткани и возникает синдром перегрузки железом
- Железо как элемент с переменной валентностью при избыточном накоплении в тканях инициирует оксидативный стресс и перекисное окисление липидов
- Это приводит к <u>воспалительной реакции</u> и развитию фиброза

КЛИНИЧЕСКИЕ ПРИЗНАКИ ГЕМОХРОМАТОЗА

Увеличение печени (печень обычно плотная с гладкой поверхностью) — ЦП формируется у 70% больных, и повышен риск развития рака печени

Пигментация кожи — бронзовый или дымчатый колорит, более заметный на открытых участках тела (лицо, руки), а также на ранее пигментированных местах (подмышечные впадины, область гениталий) — 80% больных (обычно при повышении уровня железа в 5 раз) — одно из старых названий болезни «бронзовый диабет»

врожденный гемохроматоз

Инсулинзависимый сахарный диабет (у 50% больных — из-за атрофии островков Лангерганса) и другие эндокринопатии (гипофункция половых желез, гипофункция гипофиза, надпочечников, щитовидной железы)

Кардиомиопатия (клинические проявления — у 25-35% больных; чаще — клиническая картина дилятационной кардиомиопатии, реже — рестриктивной); возможна компенсация после снижения нагрузки железа

Более редкие синдромы — артропатии (обычно без деформации суставов), хондрокальциноз, остеопороз с кальциурией

КЛИНИЧЕСКИЕ ПРИЗНАКИ ГЕМОХРОМАТОЗА ПОЯВЛЯЮТСЯ ОБЫЧНО В ВОЗРАСТЕ 50 ЛЕТ И СТАРШЕ, КОГДА ЗАПАСЫ ЖЕЛЕЗА В ОРГАНИЗМЕ ДОСТИГАЮТ 20-40 г

(у женщин органные поражения развиваются позже, чем у мужчин — после наступления менопаузы)

Основные клинические варианты течения гемохроматоза:

Гемохроматоз с преимущественным поражением печени

Гемохроматоз с преимущественным поражением поджелудочной железы и симптомами сахарного диабета

Гемохроматоз с преимущественным поражением сердца

ИДИОПАТИЧЕСКИЙ (ПЕРВИЧНЫЙ) ГЕМОХРОМАТОЗ, НЕ ОБУСЛОВЛЕННЫЙ МУТАЦИЕЙ ГЕНА НFE

- <u>Ювенильный гемохроматоз (типы 2а и 2b),</u> связанный с мутациями в генах HJV (нарушается синтез белка гемоювелина предшественника гепсидина) и HAMP (нарушается синтез самого гепсидина) также имеет аутосомно-рецессивный вид наследования
- По сравнению с типом 1 типично более раннее начало (< 30 лет, средний возраст 10 лет) и наиболее типичные проявления кардиомиопатия и гипогонадизм, а повреждение печени встречаются реже

- <u>Третий тип ПГ</u> нарушение захвата гепатоцитами железа, связанного с трансферрином (дефект TFR2) наследование аутосомно-рецессивное, клинически напоминает первый тип
- Редко встречающийся четвёртый тип ПГ с аутосомнодоминантным вариантом наследования связан с нарушением высвобождения железа и с задержкой его в макрофагах; по сравнению с типом 1 менее выражена слабость, сонливость, артропатия, пигментация кожи, поражение печени (чаще в купферовских клетках с развитием фиброза; реже в гепатоцитах с развитием цирроза); часто сахарный диабет, эндокринопатия, кардиомиопатия, гипогонадотропный гипогонадизм

- Ещё более редкий <u>пятый вариант</u> (дефект гена FTH1 кодирует синтез тяжёлой единицы ферритина) также с аутососмно-доминантным наследованием
- В клинической картине типична незначительная слабость, пигментация кожи, более тяжёлое, чем при типе 4 поражение печени (отложение железа больше в гепатоцитах и меньше в купферовских клетках чаще развивается ЦП)

АФРИКАНСКАЯ ПЕРЕГРУЗКА ЖЕЛЕЗОМ

- Известна также как <u>банту-сидероз</u>
 или перегрузка пищевым железом впервые
 обнаружено среди лиц африканского
 происхождения в Южной и Центральной
 Африке
- Перегрузка железом связана с употребление большого количества домашнего пива с высоким содержанием в нём железа

АФРИКАНСКАЯ ПЕРЕГРУЗКА ЖЕЛЕЗОМ

- При домашнем приготовлении пива в сельских районах Африке в железных горшках или барабанах повышается содержание железа в пиве, достигая 46—82 мг/л по сравнению с 0,5 мг/л в коммерческом пиве
- Но дело не только в этом исследования выявили нарушения функции ферропортина у этих больных, и это в сочетании с избыточным потреблением железа с пивом в совокупности и приводит к манифестации заболевания

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ПЕРЕГРУЗКИ ЖЕЛЕЗОМ

- 1. Повышение уровня железа в сыворотке крови
- 2. Степень насыщение трансферрина железом у женщин до наступления менопаузы более 50%, после наступления менопаузы и у мужчин более 60% (норма 15-50%)
- 3. Повышение уровня ферритина у женщин до наступления менопаузы более 200 мкг/л, после наступления менопаузы и у мужчин более 300 мкг/л
- 4. Общая железосязывающая способность сыворотки менее 28 мкмоль/л

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ПЕРЕГРУЗКИ ЖЕЛЕЗОМ

5. Ранее иногда использовалась диагностическая десфераловая проба — возрастание экскреции железа с мочой (более 1,5 мг/сутки) после однократного парэнтерального введения 0,5 гр десферала

Теперь эта проба используется редко

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ГЕМОХРОМАТОЗА

* Пункционная биопсия печени — отложение железа в гепатоцитах и макрофагах; возможна количественная оценка железа в биоптате методом атомноабсорбционной спектрометрии с вычислением печеночного индекса железа (ПИЖ – отношение концентрации железа в печени в мкмоль/г сухого веса к возрасту больного в годах) ПИЖ > 1,9 ммоль/г/год; концентрация железа в печени более 200 мкмоль/г

* MPT — неинвазивный метод определения железа в печени по снижению интенсивности сигнала

Диета — традиционно считалось, что необходимо ограничение продуктов, содержащих железо: мясо (особенно богаты железом печень и колбасы с добавлением крови), рыба, а также — бобовые, гречневая крупа и пшено)

Всасывание гемового железа из мяса 17-21%, из рыбы — 9-11%, из сои — 5-7%, из растительных продуктов из-за связи железа с фитиновой кислотой — всего 1-2% (растительные продукты препятствуют всасыванию железа из мяса и мясных продуктов)

- В настоящее время показано, что диета не оказывает влияния на развитие или прогрессирования гемохроматоза
- Единственная рекомендация исключить алкоголь не только из-за токсического влияния на печень, но и по той причине, что этанол снижает синтез гепсидина
- Некоторые авторы рекомендуют ограничить употребление чая и цитрусовых, которые могут способствовать накоплению железа

Кровопускание — до 0,5 л от 50 до 100 раз в год до снижения уровня железа до нормы, потом пожизненно 3-4 раза в год (целевой уровень ферритина — 50 мг/мл)

Цитаферез — дробное изъятие 500-1000 мл крови с удалением из нее эритроцитов и возвращением в сосудистое русло аутоплазмы — сеансы 1-2 раза в неделю, потом — 1 раз в месяц

Симптоматическая терапия

ФЛЕБОТОМИЯ

- Другой вариант флеботомиии кровопускание производят из расчета 7 мл/кг массы тела, что составляет 10—15% объема циркулирующей крови, с замещением объема коллоидными или солевыми растворами
- В начале терапии флеботомии проводят 1 раз в неделю до достижения содержания ферритина сыворотки ≤ 50 мкг/л при сохранении Hb ≥ 110 г/л; далее — поддерживающие флеботомии каждые 1—4 месяца в том же объеме
- Для сокращения времени достижения целевого снижения запасов железа (ферритин сыворотки ≤ 50 мкг/л) можно использовать сочетание флеботомии в объеме 7 мл/кг еженедельно с хелатором железа деферазироксом в дозе 10—15 мг/кг/сут ежедневно per os с последующей поддерживающей терапией деферазироксом в дозе 5—10 мг/кг/сут ежедневно постоянно

- * Используется пероральным <u>хелатор железа</u> деферозирокс с периодом полувыведения 8-16 часов, что позволяет принимать препарат 1 раз в сутки
- * Деферазирокс контролирует токсичный пул лабильного железа плазмы и удаляет отложения железа из ткани печени и сердца
- * Выбор начальной дозы деферазирокса определяется терапевтической целью: поддержание нейтрального баланса железа или достижение отрицательного баланса железа, т.е. обеспечение активного выведения железа из организма и колеблется от 5 до 40 мг/кг/сутки

Необходим мониторинг показателей, отражающих степень перегрузки железом — определение ферритина, ОЖСС, НТЖ (насыщение трансферина железом) в ходе подбора лозы ежемесячно, затем каждые 3-6 месяцев

Мониторинг содержания железа в печени и сердце проводится с помощью MPT в режиме T2* с частотой 1 раз в год у больных с умеренной и тяжелой перегрузкой железа

По показаниям проводятся исследование костного мозга и биопсия печени с последующими морфологическими и гистохимическими исследованиями, а также количественным анализом содержания железа в ткани печени (при тяжелой перегрузке железом — ежегодно)

С целью контроля безопасности хелаторной терапии (препарат гепато- и нефротоксичен) необходимо проводить следующие исследования:

- креатинин сыворотки дважды до начала терапии деферазироксом и далее ежемесячно
- содержание белка в моче (общий анализ мочи) ежемесячно
- активность АЛТ, АСТ ежемесячно
- контроль зрения и слуха до начала хелаторной терапии и далее ежегодно
- рост и масса тела ежегодно у пациентов до 18 лет

Новые средства для лечения гемохроматоза:

- Препараты гепсидина
- Агонист ВМР6 (костный морфогенетический протеин)

ГЕННАЯ ТЕРАПИЯ ГЕМОХРОМАТОЗА

- Ингибирование экспрессии гена DMT1, который отвечает за транспорт двухвалентных атомов металлов в клетках кишечника
- Ингибировании гена ферропортина (SLC40A1) снижение экспрессии ферропортина может сократить поступление железа в кровь из просвета кишечника

• Последние два метода базируются на использовании вирусных векторов, которые несут последовательности малых интерферирующих РНК (siRNA), направленных на разрушение матричных РНК соответствующих генов, что сокращает производство белковых продуктов этих генов

ПРИОБРЕТЁННЫЙ СИНДРОМ ПЕРЕГРУЗКИ ЖЕЛЕЗОМ

ПРИОБРЕТЕННЫЙ СИНДРОМ ПЕРЕГРУЗКИ ЖЕЛЕЗОМ

- Анемии (талассемия, сидеробластная анемия, хроническая гемолитическая анемия)
- Миелодиспластический синдром
- Гемотрансфузии и парэнтеральное введение препаратов железа

ВТОРИЧНАЯ ПЕРЕГРУЗКА ЖЕЛЕЗОМ

- Каждая трансфузия 250 мл эритроцитной массы, полученная из 420 мл донорской крови, содержит 200 мг железа, которое освобождается макрофагами селезенки и печени и рециркулирует в организме реципиента
- После 20 гемотрансфузий содержание железа в организме реципиента увеличивается вдвое, и его избыток доставляется трансферрином в гепатоциты для хранения

ВТОРИЧНАЯ ПЕРЕГРУЗКА ЖЕЛЕЗОМ

- Регулярные гемотрансфузии приводят
 к переполнению железом трансферрина и клеток
 печени и накоплению железа в органах,
 не предназначенных для хранения запасов железа,
 в том числе в сердце, что ведет к развитию
 токсической кардиомиопатии, ЦП, поражения ПЖ
- Кардиомиопатия проявляется аритмиями, нарушением сократительной способности сердца и служит основной причиной смерти больных большой β-талассемией, с раннего детства получающих регулярные заместительные трансфузии эритроцитной массы

НАЦИОНАЛЬНЫЕ КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ «ПЕРЕГРУЗКА ЖЕЛЕЗОМ: ДИАГНОСТИКА И ЛЕЧЕНИЕ», 2018

ДЕФИЦИТ АЛЬФА-1-АНТИТРИПСИНА

(МКБ-10 — E88.0 Дефицит альфа-1антитрипсина)

Дефицит альфа-1-антитрипсина (А1АТ)

Генетически детерминированное заболевание, вызванное недостаточностью A1AT в сыворотке крови и проявляющееся ввиде хронической обструктивной болезни легких (ХОБЛ), эмфиземы легких, поражения печени и сосудов

- * Альфа-1-антитрипсин одноцепочечный гликопротеин массой 52 кДа, который является ингибитором протеаз семейства серпинов (serin protease inhibitor serpin)
- * Преимущественная мишень альфа-1-антитрипсина нейтрофильная эластаза, которая разрушает эластин, коллаген, фибронектин, ламинин, протеогликаны и другие компоненты экстрацеллюлярного матрикса
- * Главным источником А1АТ являются гепатоциты, но его могут синтезировать также мононуклеарные фагоциты, нейтрофилы, клетки эпителия слизистой дыхательных путей и кишечника

ФУНКЦИИ А1АТ

Альфа-1-антитрипсин обеспечивает более 90% защиты от протеолитической нагрузки на нижние дыхательные пути, и кроме того, A1AT обладает противовоспалительным, иммуномодулирующим, антиоксидантным, бактерицидным и другими свойствами, которые обусловливают его протективное действие на легочную ткань

ДЕФИЦИТ А1АТ

- A1AT кодируется геном, который находится на длинном плече 14 хромосомы (14q32.1)
- Этот ген имеет два названия SERPINA1 (англ. serpin peptidase inhibitor, clade A), или Pi (proteinase inhibitor)
- Ген отличается высокой полиморфностью к настоящему времени описано более 100 вариантов аллелей*
- Из этого количества в базу данных по мутациям человека (HGMD) вошло более 50 патогенных мутаций

ДЕФИЦИТ А1АТ

- Номенклатура фенотипов А1АТ, как и всех ингибиторов протеаз (Pi — protease inhibitor) основана на электрофоретической подвижности белковой молекулы
- Нормальный белок обозначается буквой М, и аллель М даёт 50% активности А1АТ, следовательно нормальный фенотип Рі*ММ обеспечивает 100% концентрацию А1АТ в сыворотке крови

Все аллели классифицируются в зависимости от плазменной концентрации и свойств А1АТ на несколько типов:

- * нормальные аллели, ответственные за выработку А1АТ с нормальными свойствами и в достаточном количестве
- * дефицитные аллели, при которых вырабатывается недостаточное количество A1AT
- * нулевые аллели, при которых А1АТ в крови полностью отсутствует
- * аллели с нарушением функции, при которых количество A1AT не отличается от нормы, но он не может выполнять свои функции

ДЕФИЦИТ А1АТ

- Быстроперемещающийся при электрофорезе белок обозначается буквой F
- Медленно перемещающиеся белки буквами Р и S
- Наиболее медленный белок Z
- Фенотипы Pi*MZ, SS и FZ обеспечивают 60% концентрации A1AT
- Фенотип Рі*М обеспечивает 50%
- Фенотип Pi*ZZ обеспечивает 15%
- Фенотип Рі*Z обеспечивает 10%
- Фенотип Pi* A1AT совсем не синтезируется

ДЕФИЦИТ А1АТ

- * Аллели наследуются по кодоминантному типу, то есть специфический фенотип A1AT определяется двумя аллелями, в полной мере проявляющими своё действие
- * Наиболее распространенным нормальным фенотипом является Pi*MM (средняя подвижность), который определяется у 95% лиц европеоидной расы

* Дефицит А1АТ обычно возникает в результате наследования двух дефицитных аллелей, причём гетерозиготное носительство дефицитного аллеля скорее можно рассматривать как предрасположенность к развитию патологии

* У курящих лиц с фенотипом Pi*MZ выше риск развития бронхиальной обструкции

- * К основным дефицитным аллелям относятся варианты S и Z, при которых A1AT полимеризуется, задерживается в печени и поступает в кровь в меньшем количестве
- * Подавляющее большинство случаев клинически значимого дефицита A1AT развивается при фенотипе Pi*ZZ (96%)
- * S аллель приобретает клиническое значение при сочетании с вариантами Z или Q0 (нулевая аллель)

- * Если активная форма A1AT не образуется или концентрация его в сыворотке крови менее 1% от нормы, аллель называется нулевой, фенотип обозначается NullNull или QOQO и при этом развивается наиболее тяжелая форма дефицита A1AT
- * Это крайне редкий вариант дефицита A1AT определяется в единичных случаях
- * Иногда возникают мутации (например, Pittsburgh мутация), при которых концентрация A1AT не отличается от нормы, однако его свойства близки к антитромбину, что приводит к нарушению свертыванию крови и повышает риск развития геморрагического шока и смерти при воспалительных заболеваниях и травмах

ЭПИДЕМИОЛОГИЯ

* По данным Европейского легочного фонда, в странах Европы распространенность дефицита A1AT варьирует в пределах 1 к 1800–2500 новорожденным

* В европейской части России частота Z-аллели колебалась от 0,3 до 1%, частота S-аллели — от 0,2 до 1,5%

ЭПИДЕМИОЛОГИЯ

Распространенность дефицита A1AT среди пациентов с диагностированной ХОБЛ составляет от 1 до 5% В 1984—2000 годах в РФ проведено исследование по определению уровня A1AT в сыворотке крови у 366 пациентов с бронхообструктивными заболеваниями

Среди обследованных больных выявлено 11 (3,3%) гомозиготных носителей ZZ-аллелей и 5 (1,5%) носителей SS-аллелей

ЭПИДЕМИОЛОГИЯ

По расчетам, в европейской части РФ около 17,7 тыс. гомозиготных или компаунд-гетерозиготных лиц (т.е. состояние, при котором один и тот же локус на гомологичных хромосомах представлен разными мутантными аллелями) по S- или Z-аллели, а также 2,6 млн. носителей

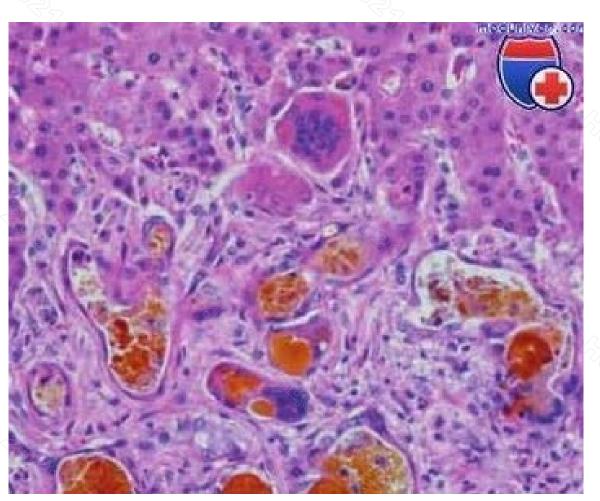
В азиатской части эти цифры составляют 1,2 тыс. и 500 тыс. соответственно

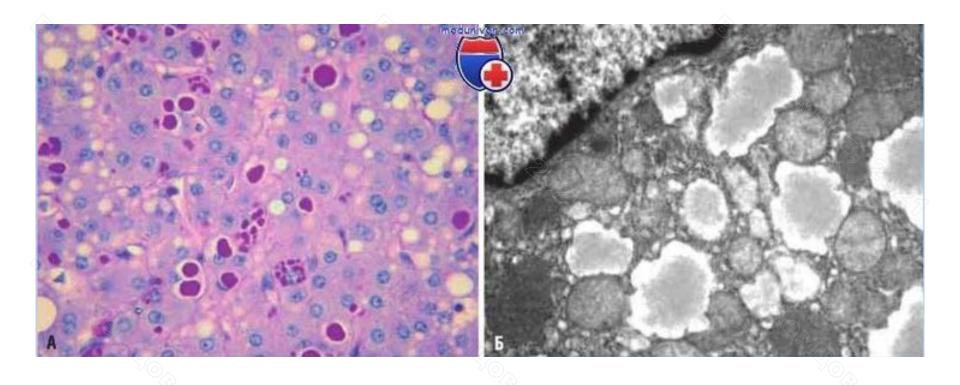
Клинические варианты дефицита А1АТ

- * дефицит A1AT с преимущественным поражением гепатобилиарной системы
- * дефицит A1AT с преимущественным поражением дыхательной системы
- * дефицит A1AT с сочетанным поражением легких и печени

ПАТОГЕНЕЗ ПОРАЖЕНИЯ ТКАНИ ПЕЧЕНИ

- * Заболевания печени при дефиците A1AT возникают только при мутациях, которые ведут к накоплению A1AT в печеночных клетках
- * Классический тип такой мутации генотип Pi*ZZ, при котором полимеризованные молекулы A1AT задерживаются в эндоплазматическом ретикулуме печеночных клеток и оказывают гепатотоксический эффект


ПАТОГЕНЕЗ ПОРАЖЕНИЯ ТКАНИ ПЕЧЕНИ


У многих лиц с фенотипом Pi*ZZ клинических проявлений болезни печени не возникает — вероятно, необходимо воздействие триггерфакторов (алкоголь, стеатоз печени, инфицирование вирусами гепатита)

ДЕФИЦИТ А1АТ И ПАТОЛОГИЯ ПЕЧЕНИ

- * Поражение печени у лиц с фенотипом PI*ZZ часто начинается в детском возрасте и может носить субклиническую форму, а может протекать в виде тяжелого заболевания с развитием цирроза печени
- * Частота развития цирроза печени увеличивается с возрастом и составляет 3% среди пациентов до 20 лет и 30—50% у пожилых
- * При дефиците A1AT редко наблюдается одновременно выраженное поражение легких и печени

Гепатит новорожденных, вызванный дефицитом альфа-1-антитрипсина. Признаки тяжелого холестаза

(A) PAS-реакция выявляет характерные красные гранулы в цитоплазме гепатоцитов

(Б) На электронной микрофотографии показаны расширенные цистерны эндоплазматической сети

- * При дефиците A1AT у взрослых преобладают легочные формы, при этом наиболее типичны эмфизема лёгких, XOБЛ, рецидивирующие бронхообструктивный синдром
- * Кроме того, имеются указания на связь дефицита A1AT с образованием бронхоэктазов, бронхиальной астмы, с развитием повторных пневмоний, идиопатического лёгочного фиброза, а также рака легких
- * Первым проявлением болезни или осложнением уже известного заболевания может быть спонтанный пневмоторакс

ДЕФИЦИТ А1АТ

- * Одним из редких проявлений дефицита А1АТ является некротизирующий панникулит. Есть сообщения о связи дефицита А1АТ с ANCA-ассоциированными (ANCA— антитела к цитоплазме нейтрофилов) васкулитами, в частности с гранулематозом Вегенера (гранулематоз с полиангиитом)
- * Предполагается существование связи между дефицитом A1AT и такими заболеваниями, как фибромускулярная дисплазия, гломерулонефрит, панкреатит и колит, рак мочевого пузыря, колоректальный рак, рак легкого и крапивница

Sun Z, Yang P. Role of imbalance between neutrophil elastase and α alpha 1 -antitrypsin in cancer development and progression. The Lancet Oncology 2004;5(3):182-190 Yang P, Sun Z, Krowka MJ, Krowka MJ, Aubry MC, Bamlet WR, Wampfler JA, Thibodeau SN, Katzmann JA, Allen MS, Midthun DE, Marks RS, de Andrade M. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Archives of Internal Medicine 2008;168(10):1097-103

- * Наиболее распространенной причиной смерти у пациентов с дефицитом A1AT является дыхательная недостаточность (45—72% смертей), затем следует цирроз печени (10—13% смертей)
- * Среди некурящих пациентов с фенотипом Pi*ZZ эмфизема ответственна за меньшее количество смертей (45%), а цирроз за большее (28%)
- * Прогноз дефицита A1AT помимо курения отягчает воздействие пыли и испарений, частые обострения ХОБЛ и респираторные инфекции, бронхиальная астма
- * Предикторами выживаемости у пациентов с дефицитом A1AT является значение объем форсированного выдоха за 1-ю секунду (ОФВ1), а также показатели КТ-денситометрии (КТ компьютерная томография)

ДЕФИЦИТ A1AT С ПРЕИМУЩЕСТВЕННЫМ ПОРАЖЕНИЕМ ПЕЧЕНИ

Дифференциальную диагностику проводить со следующими заболеваниями:

- Гемохроматоз
- Болезнь Вильсона-Коновалова
- Метаболически-ассоциированная жировая болезнь печени
- Первичным билиарный холангит

ДИАГНОСТИЧЕСКИЕ МАРКЕРЫ ДЕФИЦИТА А1АТ

Проявления со стороны органов дыхания

- Рано возникшая эмфизема (в возрасте 45 лет)
- Эмфизема легких в отсутствие известных факторов риска (курение, производственное воздействие пыли и др.)
- Эмфизема с преимущественным поражением базальных отделов
- Развитие ХОБЛ у лиц моложе 40 лет и/или со стажем курения менее 20 пачек-лет
- Бронхоэктазы неясной этиологии
- Бронхиальная астма с устойчивым к терапии нарушением функции легких

ДИАГНОСТИЧЕСКИЕ МАРКЕРЫ ДЕФИЦИТА А1АТ

Проявления со стороны других органов и систем

- Болезнь печени неясной этиологии
- Некротизирующий панникулит
- ANCA-ассоциированный васкулит
- Наличие в семейном анамнезе эмфиземы легких, бронхоэктазов, болезни печени, панникулита либо подтвержденный дефицит A1AT у кровных родственников (особенно у братьев и сестер)

Пациентов с ХОБЛ, особенно при дебюте заболевания в возрасте <40 лет, стаже курения <20 пачек-лет, эмфизематозном фенотипе, с преимущественным расположением эмфиземы в базальных отделах рекомендуется тестировать на дефицит A1AT

ДИАГНОСТИКА ДЕФИЦИТА А1АТ

Определение уровня A1AT в сыворотке крови — нормальные значения при использовании метода иммунотурбидиметрии, 0,9—2 г/л, а при измерении методом нефелометрии — от 2 до 4 г/л)

Следует учитывать, что при инфекционных и воспалительных реакциях, опухолях, стрессе, шоке, беременности, приеме эстрогенсодержащих препаратов уровень A1AT в крови повышается

Исследование лучше проводить вне периода обострения ассоциированных с дефицитом А1АТ заболеваний

Гембицкая Т.Е., Черменский А.Г., Илькович М.М., Цампруби С. Первичная эмфизема легких у молодого мужчины, обусловленная гомозиготным дефицитом α1-антитрипсина (генотип ZZ): перспективы организации помощи больным. Пульмонология 2014;6:115-21.

ДИАГНОСТИКА ДЕФИЦИТА А1АТ

Генотипирование — для определения дефицита A1AT (S- и Z аллели)

По уровню A1AT в сыворотке крови невозможно предположить генотип дефицита A1AT

Кровным родственникам пациентов с дефицитом А1АТ (особенно родным братьям и сёстрам), а также супругам лиц, имеющим 1 или 2 Z-аллели (до рождения ребенка), рекомендуется проводить генотипирование

ДИАГНОСТИКА ДЕФИЦИТА А1АТ

Для оценки прогрессирования эмфиземы лёгких — КТ-денситометрия, которая позволяет количественно оценить выраженность эмфиземы

Проведение биопсии печени для подтверждения дефицита A1AT не рекомендуется

American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. American Journal of Respiratory and Critical Care Medicine 2003;168(7):818-900 Parr DG, Stoel BC, Stolk J, Stockley RA. Validation of computed tomography lung densitometry for monitoring emphysema alpha 1-antitrypsin deficiency. Thorax 2006;61(6):485-490

ЛЕЧЕНИЕ ДЕФИЦИТА А1АТ

Специфическое средство лечения лёгочной формы дефицита A1AT — внутривенная заместительная терапия человеческим A1AT, полученным из пула донорской плазмы

Профилактическое применение заместительной терапии нецелесообразно, поскольку не у всех пациентов с тяжелым дефицитом A1AT развивается эмфизема легких

Заместительную терапию при дефиците A1AT не рекомендуется проводить пациентам, которые продолжают курить

Пациентам с поражением печени, ассоциированным с дефицитом A1AT, проведение заместительной терапии не рекомендуется

ЛЕЧЕНИЕ ДЕФИЦИТА А1АТ

При поражении печени заместительная терапия неэффективна, поскольку поражение печени связано с накоплением полимеров A1AT, а не с потерей протеолитической защиты

Заместительная терапия при сочетанном поражении лёгких и печени не влияет на поражение печени у этих пациентов

При тяжёлом поражении печени — трансплантация печени

МУКОВИСЦИДОЗ (МВ) (МКБ-10 — Е84 — Кистозный фиброз)

МУКОВИСЦИДОЗ (МВ) (КИСТОЗНЫЙ ФИБРОЗ)

Аутосомно-рецессивное моногенное заболевание, обусловленное мутацией гена *CFTR* (трансмембранный регулятор муковисцидоза), при котором поражаются дыхательные пути, желудочно-кишечный тракт, печень, поджелудочная железа, слюнные, потовые железы, репродуктивная система

- Патология дыхательной системы главная причина осложнений и летальности (более чем в 90%)
- Возраст манифестации заболевания очень различается

- Ген МВ был изолирован в 1989 году, он расположен в середине длинного плеча 7 аутосомы и содержит 27 экзонов и охватывает 250 000 пар нуклеотидов
- Этот ген контролирует структуру и функцию белка МВТР трансмембранного регулятора муковисцидоза, который локализуется в апикальной части мембраны эпителиальных клеток, выстилающих выводные протоки желез внешней секреции (в бронхах, поджелудочной железе, кишечнике, урогенитальном тракте)
- Белок регулирует транспорт электролитов (главным образом хлора) между этими клетками и межклеточной жидкостью и фактически является собственно хлоридным каналом

- К настощему времени выявлено около 2 000 мутаций этого гена
- Мутации гена МВ нарушают не только транспорт, но и секрецию ионов хлора и при затруднении их прохождения через клеточную мембрану увеличивается реабсорбция натрия железистыми клетками, нарушается электрический потенциал просвета, что вызывает изменение электролитного состава и дегидратацию секрета желез внешней секреции
- В результате выделяемый секрет становится чрезмерно густым и вязким и развивается патология легких, желудочно-кишечного тракта, печени, поджелудочной железы, мочеполовой системы

Вязкий бронхиальный секрет приводит
к развитию бронхиальной обструкции, на фоне
которой развивается хроническая
бронхиальная инфекция и формируется
порочный круг: бронхиальная обструкция —
инфекция — гиперпродукция вязкой слизи —
усиление бронхиальной обструкции

- Различают несколько классов мутаций гена МВ
- 1. Синтез дефектного протеина с короткой белковой цепью
- 2. Синтез протеина с белковой цепью нормальной длины, но не способного встраиваться в апикальный участок мембраны
- 3. Синтез функционально дефектного белка, приводящий к нарушению регуляции *CFTR*
- 4. Синтез белка, который не способен транспортировать ионы хлора

ЭПИДЕМИОЛОГИЯ

- МВ наследуется по аутосомно-рецессивному типу и наиболее распространен у лиц европеоидной расы, при этом его частота существенно варьируется в различных географических регионах и этнических группах
- Каждый 25-й представитель европеоидной расы носитель гена МВ, и частота гетерозиготного носительства патологического гена равна 2-5 %

ЭПИДЕМИОЛОГИЯ

- В странах Северной Европы и Северной Америки встречаемость МВ в среднем составляет 1 на 2000—2500 новорожденных, однако имеются значительные колебания, так, например, в Ирландии частота МВ составляет 1: 1800 новорожденных, а в Финляндии 1: 26000
- МВ редко встречается среди коренного населения Азии и Африки (менее 1 на 100 000)
- В России частота МВ в различных регионах колеблется от 1:8500 до 1:12900 новорождённых, в среднем п о данным ФГБУ «Медико-генетический научный центр « 1:9000 новорожденных

ФОРМЫ МВ

1. Легочная форма заболевания (муковисцидоз с ненарушенной функцией поджелудочной железы)

2. Смешанная или легочно - кишечная форма заболевания (муковисцидоз с панкреатической недостаточностью)

КЛИНИЧЕСКАЯ ХАРАКТЕРИСТИКА БРОНХОЛЁГОЧНЫХ ЗАБОЛЕВАНИЙ ПРИ МВ

- 1. Хронический обструктивный бронхит
- 2. Бронхоэктазы (локализованные, диссеминированные)
- з. Пневмофиброз

БРОНХОЛЁГОЧНАЯ ИНФЕКЦИЯ ПРИ МВ

- В классическом варианте в раннем возрасте развивается инфекция, вызванная *S.aureus*, затем с увеличением возраста присоединяется инфекция, обусловленная *H. influenzae* и *P.aeruginosa*
- В последние годы всё большее значение приобретают неферментирующие глюкозу грамотрицательные бактерии (НГОБ) Burkholderia cepacia complex (B.cepacia complex), Stenotrophomonas maltophilia (S. maltophilia), Achromobacter xylosoxidans (A.xylosoxidans), нетуберкулезные микобактерии, а также микромицеты

134

ЖАЛОБЫ

- Мучительный приступообразный кашель
- Трудноотделяемая гнойная вязкая мокрота
- Свистящее дыхание
- Нарушение носового дыхания (заложенность)
- Гнойные выделения из носа
- Одышка (затрудненное дыхание)
- Боли в животе, обильный, частый (4-6 раз в сутки), блестящий, жирный, зловонный стул
- Слабость, утомляемость, задержка развития (дети)
- Снижение массы тела/задержка в прибавке веса

осложнения мв

- Абсцессы, ателектазы, пиопневмоторакс, кровохарканье, кровотечение (легочное, желудочное), аллергический бронхолегочный аспергиллез (АБЛА)
- Полипоз носа
- Мекониевый илеус (закупорка меконием подвздошной кишки
 — в 95% случаев сочетается с муковисцидозом, и до 15%
 взрослых больных муковисцидозом имели эту патологию
 в период новорожденности)
- Выпадение прямой кишки
- Отставание в физическом развитии
- Нарушение толерантности к углеводам и муковисцидозассоциированный сахарный диабет
- Синдром псевдо-Барттера (Bartter F.)

СИНДРОМ ПСЕВДО - БАРТТЕРА

Симптомокомплекс, характеризующийся гипокалиемией, гипохлоремией, метаболическим алкалозом, обезвоживанием, повышенной активностью ренина плазмы крови, повышенным содержанием альдостерона в крови — развивается у детей и подростков с МВ больных в экстремальных погодных условиях (жаркая погода) при несоблюдении рекомендаций по дополнительному обеспечению солями натрия и хлора и коррекции водной нагрузки

(не путать с синдромом Барттера — генетически детерминированный нормотензивный гиперальдостеронизм!)

осложнения мв

- Белково-энергетическая недостаточность
- Снижение минеральной плотности костной ткани и развитие вторичного остеопороза
- Амилоидоз почек
- Сиалоаденит
- Витамин К-дефицитные состояния
- Анемия
- Легочная гипертензия и сердечно-сосудистая недостаточность
- Цирроз печени (без и с портальной гипертензией)

МВ взрослых делится на две группы:

- 1. Больные с «типичной» формой заболевания, заболевшие в раннем детстве и дожившие до взрослого возраста
- 2. Больные с атипичной формой заболевания и с поздней манифестацией

- Для больных первой из этих групп характерен дефицит массы тела, рецидивирующее течение инфекционно-воспалительного процесса в легких, формирование бронхиоло- и бронхоэктазов, пневмофиброза, эмфиземы лёгких
- Возбудителями бронхолёгочной инфекции часто является грамотрицательная микрофлора: Ps.aeruginosa, B.cepacia, Stentrophomonas maltofilia, Alcaligenes xylosoxidans
- Для больных типичен обструктивный тип вентиляционных нарушений и развитие легочной гипертензии
- Среди этих больных встречается высокая частота «мягких» генотипов с меньшей выраженностью панкреатической недостаточности, хотя возможно формирование ЦП, встречаются пансинуситы, сахарный диабет (до 20% больных) и другие легочные и вне легочные осложнения

- У больных второй группы преобладают стертые формы МВ (имеют место «мягкие» мутации в гене CFTR)
- Впервые заболевание диагностируется во взрослом возрасте и вначале протекает под разными «масками»: синусит, рецидивирующий бронхит, ХОБЛ, цирроз печени, мужское бесплодие (до 97% мужчин страдают азооспермией (от др.греч. «отсутствие животного семени) = аспермия, связанная с врожденным отсутствием или обструкцией семенного канатика, и не способны иметь потомство)

 В отличие от мужчин, у женщин заболевание хотя и сопровождается снижением фертильности (до 20% больных), у большинства детородная функция сохранена

• Тяжесть заболевания зависит от сроков появления первых симптомов: чем меньше возраст больного на момент манифестации МВ, тем тяжелее течение и менее благоприятный прогноз

МВ И БОЛЕЗНИ ПЕЧЕНИ

- Частота встречаемости заболеваний печени при МВ — 27-35%
- Поражение печени связано с нарушением экспрессии гена МВ в эпителии жёлчных протоков, что приводит к сгущению жёлчи
- У 5—10% пациентов с МВ в течение первого десятилетия жизни развивается цирроз печени

МВ И БОЛЕЗНИ ПЕЧЕНИ

- У большинства взрослых больных поражение печени протекает длительное время бессимптомно и желтуха отсутствует
- Манифестация может наступить на стадии формирования ЦП и признаков портальной гипертензии, а до этого времени наблюдается только повышение уровня ферментов холестаза

МВ И БОЛЕЗНИ ПЕЧЕНИ

• ЦП носит характер билиарного цирроза, и при гистологическом исследовании находят выраженные признаки фиброза, фокальный билиарный цирроз, пролиферацию жёлчных протоков, а также воспалительные изменения и скопление в них эозинофилов

МВ И БОЛЕЗНИ ПЕЧЕНИ

- Для больных МВ также характерна патология жёлчевыводящей системы из-за закупорки жёлчных протоков вязким секретом и отложением липидов возможно развитие ЖКБ (около 30% больных), иногда у больных уменьшаются размеры ЖП и нарушается его функция
- Описаны случаи формирования склерозирующего холангита

МВ И БОЛЕЗНИ ПЕЧЕНИ

- Большинству пациентов с циррозом печени при прогрессировании портальной гипертензии требуется трансплантация печени
- Проведение ранней трансплантации печени приводит к стабилизации или даже к улучшению функции легких после операции

- В типичных случаях МВ диагностируется в раннем детском возрасте (90% случаев на первом году жизни)
- Возможна диагностики МВ у взрослых с классическим фенотипом (как следствием двух мутантных копий гена муковисцидозного трансмембранного регулятора — CFTR) и симптомами хронического бронхита, синусита, панкреатита

- Пациенты с атипичным МВ имеют как минимум одну копию мутантного гена CFTR, функция которого частично сохранена («мягкие» мутации) у таких пациентов отмечается более лёгкое течение болезни в связи с сохранением функции поджелудочной железы и менее тяжелым поражением органов дыхания
- У всех больных диагностическим тестом служит хлоридный потовый тест повышенная концентрация хлоридов потовой жидкости

- Определение хлоридов в потовой жидкости (проба Минора) - наиболее информативный диагностический тест и считается положительный при наличии хлоридов пота >60 ммоль/л [≥ 60 мэкв/л]
- Отрицательная потовая проба (хлоридов пота <30 ммоль/л [<30 мэкв/л] во всех возрастных группах) делает диагноз МВ маловероятным
- Молекулярно-генетический анализ гена МВТР (CFTR) следует рекомендовать всем пациентам и обязательно проводить его при пограничном результате потового теста

- Исследование биоптата прямой кишки с помощью специального оборудования через клетки биоптата пропускают короткий электрический разряд
- Проводимость здоровых клеток лучше из-за нормального баланса жидкости, чем клеток больных муковисцидозом
- Кроме того, можно использовать различные стимуляторы хлорного канала для оценки его работы
- Использование этого метода может быть полезно при неопределённых результатах потовой пробы

- Микробиологическое исследование (мокрота, мазок из зева, назофарингеальный аспират, бронхоальвеолярный лаваж)
- Определение уровня панкреатической эластазы -1 в кале (диагностика панкреатической недостаточности) хроническая панкреатическая недостаточность средней степени тяжести уровень эластазы от 100 до 199 мг/г; тяжелой степени <100 мг/г; крайне тяжелая ниже 15 мг/г
- Копрограмма с определением уровня нейтрального жира (выявление стеатореи I типа)
- Лабораторные исследования на аллергический бронхолегочный аспергиллез — уровень общего (IgE), специфические IgE и IgG к Aspergillus fumigatus, возможно проведение кожного тестирования с антигеном Aspergillus fumigates

Инструментальные исследования:

- КТ органов грудной клетки
- Рентгенография пазух носа (может помочь выявить пансинусит)
- Пульсоксиметрия определение насыщения крови кислородом (отмечается снижение периферической сатурации)
- УЗИ органов брюшной полости: диффузные изменения поджелудочной железы, печени (кистозный фиброз, изменения размеров); особое внимание обращают на наличие кист в поджелудочной железе и на тип кровотока в печени наличие линейного кровотока в печени свидетельствует о формировании фиброза
- Спирометрия (или пикфлоуметрия
- ЭхоКГ с допплеровским анализом (измерение градиента давления на легочной артерии) для диагностики легочной гипертензии и легочного сердца
- ФЭГДС: для определения состояния слизистой оболочки и обнаружения признаков портальной гипертензии

Диета

- Следует исключить продукты, увеличивающие нагрузку на печень, желчевыводящие пути, поджелудочную железу жареные блюда, копчености, колбасные изделия промышленного производства, мясные деликатесы, кулинарный жир, маргарин, в том числе в составе продуктов выпечка, печенье, кондитерские изделия
- Следует исключить продукты, содержащие большое количество стабилизаторов, искусственных красителей, консервантов майонез промышленного производства, фастфуд, так называемая «мусорная пища» (junk food): чипсы, сухарики, лапша мгновенного приготовления, готовые сухие полуфабрикаты, сладкие газированные напитки: лимонады, кока-кола, фанта, спрайт, неразбавленные сладкие фруктовые напитки («нектары») промышленного производства в большом количестве и отдельно от других приемов пищи рафинированные простые углеводы (сахар, конфеты-леденцы)

154

- При сохраняющихся симптомах желудочной и кишечной диспепсии следует ограничить большие объемы продуктов, которые усиливают газообразование в кишечнике: цельнозерновой и отрубной хлеб, свежая и кислая белокочанная и краснокочанная капуста, бобовые, свекла, кожица и семечки от фруктов, орехи, грибы, неразбавленные соки
- При развитии сахарного диабета, ассоциированного с муковисцидозом (CFRD), калорийность рациона и содержание жиров (в отличие от диабета 1-го и 2-го типа) сохраняются повышенными

БАЗОВАЯ ПОТРЕБНОСТЬ В ЭЛЕКТРОЛИТАХ (ШКОЛЬНИКИ-ВЗРОСЛЫЕ)

- Na (ммоль/кг) 1—3
- К (ммоль/кг) 1—2
- CI (ммоль/кг) 2
- Суточная потребность в натрии складывается из физиологической потребности и дефицита, вызванного патологическим процессом
- Пациентам с МВ рекомендовано дополнительное введение кальция: 400-800 мг детям; 800-1200 мг подросткам и взрослым

ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ У БОЛЬНЫХ С ПАНКРЕАТИЧЕСКОЙ НЕДОСТАТОЧНОСТЬЮ (ПН)

- A всем с ПН 4000-10000 ME/сут
- Д всем с ПН 400 2000 МЕ/сут
- E всем: 0-6 мес 25 ME/сут
 - 6-12 mec 50 ME/cyt
 - 1-4 года 100 МЕ/сут
 - 4-10 лет 100-200 МЕ/сут
 - Старше 10 лет 200 400 МЕ/сут
 - * К всем с ПН 2— 5 мг/сут, а при патологии печени 2-10 мг/сут

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ «АГРЕССИВНЫХ» МЕТОДОВ НУТРИТИВНОЙ ПОДДЕРЖКИ

У взрослых:

- ИМТ <18,5 или снижение массы тела более чем на 5% за период менее 2 месяцев;
- Невозможность улучшить нутритивный статус на фоне дополнительного приема высококалорийных смесей

«АГРЕССИВНЫЕ» МЕТОДЫ НУТРИТИВНОЙ ПОДДЕРЖКИ ПРИ МВ

- Зондовое энтеральное питание в виде ночной гипералиментации, через назогастральный зонд или через перкутанную гастростому
 - Используют смеси для энтерального питания, вводят капельно (с помощью инфузионного насоса) в ночное время в течение 5-6 часов
 - Ночную гипералиментацию начинают с 1/3 рассчитанной от суточной потребности в калориях и увеличивают по мере прибавки в весе и объем смеси для ночной гипералиментации подбирается так, чтобы не снижался аппетит в дневное время
- Парентеральное питание:
 - Полное (центральный венозный катетер): при состояниях после операции на кишечнике; синдроме короткой кишки; остром панкреатите
 - Частичное (с целью дополнительного питания) используется периферическая вена: жировые эмульсии; глюкозо-аминокислотные смеси, витамины

- Кинезитерапия (лечение с помощью движения)
- Дренажные положения
- Применение специальных дыхательных тренажеров PEP (Positive Expiratory Pressure, положительное давление на выдохе)
- Дыхательные упражнения
- Кислородотерапия

- Муколитическая терапия рекомбинантная человеческая дезоксирибонуклеаза, гипертонический раствор NaCl (3—7%), маннитол (все 3 ингаляционно);
 N-ацетилцистеин ингаляционно, внутрь, в/в
- Бронхолитическая терапия
- Антибактериальная и противовоспалительная терапия
- Заместительная терапия недостаточности экзокринной функции поджелудочной железы <u>минимикросферы</u>
- Лечение поражения печени (с обязательным использованием препаратов УДХК)

ЗАМЕСТИТЕЛЬНАЯ ПАНКРЕАТИЧЕСКАЯ ТЕРАПИЯ, РАССЧИТАННАЯ ПО СОДЕРЖАНИЮ ЛИПАЗЫ

- Дети старше 4 лет и взрослые начиная с 500 ЕД липазы/кг массы тела на прием пищи, повышая постепенно до максимальной дозы, которая составляет: - 1000-2500 ЕД липазы/кг массы тела на один прием пищи, или - 10 000 ЕД липазы/кг массы тела в сутки, или - 2000-4000 ЕД липазы на 1 г жира со всеми содержащими жиры приемами пищи, перекусами, напитками (принимать во время еды)
- Использование сверхвысоких доз ферментов (более 18.000 ЕД липазы/кг) не желательно

- Ингаляционные кортикостероиды (ИГКС) используются при сочетание МВ с бронхиальной астмой, гиперреактивностью бронхов, наличие аллергического ринита
- Применяют ИГКС в форме монотерапии или в комбинации с β2-агонистами различной длительности действия
- Используются дозы, рекомендованные при данных заболеваниях в различных видах ингаляционного применения

Пероральное применение ГКС при легочной и смешанной формах МВ может быть рекомендовано при:

- Тяжелое течение MB с частыми обострениями и выраженной дыхательной недостаточностью
- Обструктивный синдром, рефрактерный к действию β2-агонистов
- При воспалении с образование ателектазов в легких
- При аллергическом бронхолегочном аспергиллезе (АБЛА)

Преднизолон назначается из расчета 1-2 мг/кг фактического веса, внутрь в течение 15-20 дней; скорость снижения определяется исходной дозой: при 15 мг/сут и более снижение по 1-1,25 мг 1 раз в 3-4 дня; с 15-10 мг/сут снижение по 1-1,25 мг 1 раз в 5-7 дней; при необходимости более длительной терапии - альтернирующий курс приема преднизолона

- Нестероидные противовоспалительные препараты (НПВП) при МВ рассматриваются как альтернатива ГКС (только ибупрофен)
- В неоторых исследованиях показано, что высокие дозы ибупрофена (концентрация в плазме 50-100 г/мл) позволяют сохранить функции легких и замедлить прогрессирование лёгочного поражения
- Риск побочных эффектов связан в основном с желудочнокишечными расстройствами и кровотечением, при этом польза превалирует над рисками
- Ибупрофен в дозе 20-30 мг на 1 кг массы тела 2 раза в день детям в возрасте от 6 лет и взрослым; максимальная суточная доза для взрослых составляет 1,2 г; для детей и подростков в возрасте от 12 до 17 лет 1,0 г

MB

Прогноз заболевания определяет рациональная антибактериальная и муколитическая терапия, которая направлена на максимально возможное сохранение легочной функции и минимизацию числа обострений респираторных инфекций улучшение качества и продолжительности жизни и перспективы для трансплантации легких и/или печени

Благодарю за внимание!